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ABSTRACT

A three body general rearrangement collision is considered
where the initial and final bound states are described by the
hydrogen like wave functions. The solution obtained is for the
first Born approximation where the full interaction potential is
taken into account. When the initial state is the ground state, it
is shown that for n/(,pZ) >> 1, where n, ,, and Z are the principal
quantum number, the reduced mass, and the nuclear charge of the
final state, the capture cross section at all incident energies and
for capture into the s, p, and d angular momentum states behaves
as C/n 3 + 0(1/ns), where C depends on masses and charges of
the particles, the final angular momentum, and the incident energy.
Analytic expression for C is given. It is shown that for the low
lying levels the 1/n 3 scaling law at all incident energies is only
approximately satisfied. The only exception is for capture into the
s states according to the Oppenheimer -Brinkman-Kramers
approximation.

The case of the symmetric collisions is considered and it is
shown that for high n and high incident energy, E, the cross section
behaves as 1/E 3. Zeros and minima in the differential cross
sections in the limit of high n for protons on atomic hydrogen and
positrons on atomic hydrogen are given.
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I. INTRODUCTION

In passage of charged particles through gases the main process for neutral-

izing the charged particles is the capture of electrons from the surrounding gas.

Such passages occur naturally for example in the diffusion of charged particles

produced by a super novae explosion in the intersellar media, or in the diffusion

of the solar wind through the planetary atmospheres. Similarly, by passing a

beam of protons through a gas, highly excited states of atomic hydrogen are

produced. The atoms through an electric field are consequently ionized to pro-

duce a highly ionized plasma. The recently observed so called exotic atoms,

such as positronium, muonium, and protonium, are other examples where re-

arrangement collisions play an important role in their formations.

In the examples mentioned above the capture takes place not only in the

ground state, but in the excited states as well. The large number of the calcula-

tional methods which deal with the problem of the rearrangement collisions more

rigorously and realistically than the first Born approximation are mainly for

capture into the ground state, and occasionally the first few excited states. In

this respect mention should be made of the close coupling approximation of

Bates 1 and McElroy2 , distorted wave approximation of Bassel and Gerjuoy3

4 5
the impulse approximation of McDowell and Cheshire , the continuum distorted

wave approximation of Cheshire 6 , the first order Faddeev-Watson multiple-

scattering approximation , the second order Born approximation , and the

correspondence principle method of Abrines and Percival. In all these

references, except Ref. 9, capture into the ground state of the formed atom is

considered,.and except Refs. 5 and 7, the system considered is electron capture

by protons from the atomic hydrogen.



The most commonly used calculation for capture into the excited state is

10
based on a method which is due to Oppenheimer , and Brinkman and Kramers 1 1

whereby the first Born approximation is used, but the repulsive potential between

the projectile and the target nucleus is neglected. The calculation of these authors,

which from now on we call Oppenheimer, Brinkman and Kramers, or for short

OBK, approximation was done for capture into the ground state. Extension to

the excited states has been done by May 2 , Butler, May, and Johnsonl3, Hiskes

and Omidvar 5 . More elaborate calculation for the first few low lying states has

been done by Mapleton 6 , using the full first Born, Coleman and Treleasel 7

using the impulse, and Cheshire, Gallaher and Taylor 8 , using the pseudostate

expansion, approximations.

It was predicted by Oppenheimer that when capture takes place into s states

of the excited states, at sufficiently high incident energies the cross section falls

as 1/n 3 . This implies that at sufficiently high energies the total cross section

also falls as 1/n 3 . On the other hand the same cross section according to the

binary encounter theory should fall as 1/n 2 (Ref. 18a). In this paper by expanding

the exchange amplitude in inverse powers of n it is shown conclusively that the

cross section for capture into the s, p, and d states, and for the sum over all the

angular momentum states, falls as 1/n 3 . An error in a previous article by the

author 1 9 has been corrected in the appendix, and the corrected result is in agree-

ment with the results presented in the text. It is worth mentioning that a recent

measurement by Macdonald et a12 0 favors the 1/n 3 over the 1/n 2 behavior.

3



The question of validity of the first Born approximation for rearrangement

collisions has been the subject of substantial studies. However, almost all of

these studies are restricted to the case of the heavy particle projectile, where

the trajectory can be described classically, and the heavy target nucleus. In

summary it has been shown that in an exact calculation for the p + H system

the contribution of the repulsive potential to the cross section is of the order

of the squared of the ratio of the mass of the electron to the mass of the proton,

and therefore is insignificantly small. 2 1 ,2 2 Also it has been shown that for

high incident energies and the forward scattering angles, where the main contri-

bution to the total cross section comes from, the terms containing the repulsive

potential in the sum of the first and second Born amplitudes cancel out, making

the cross section up to the second Born independent of this potential. 2 3 ,8 It is

also significant to note that the second Born provides the asymptotically leading

23,24
term with respect to the incident energy.

The above consideration for the p + H system applies to an exact solution

of the problem. It was suggested by Jackson and Schiff2 5 , and Bates and Dalgarno26

that as long as an approximate wave function, as is the case in the first Born,

is used, the full Born is preferable to the OBK approximation. This is substan-

tiated by the result that for the p + H system the cross section according the

full Born for the incident energies above 50 KeV is in excellent agreement with

the measured cross section, while the OBK results are by a factor of 5 to 2

larger than either the full Born or the experimental results2 5

In the formulation that follows for the sake of generality charges Z1 e and

Z 2 e are assigned to the projectile and the target nucleus. In applying this to

4



a particular problem the approximate nature of the calculation should be kept

in mind.

It should be mentioned that sometimes the first Born approximation is called

the method of Jackson and Schiff. However, since the calculations of these

authors can not be considered a new method, this terminology is not being used

here.

5



II. BASIC DERIVATION

A. General Expression for the Amplitude

1. Capture into a Fixed Angular Momentum State

For generality let us consider two like charged structureless particles 1

and 2, and one unlike charged structureless particle 3. The rearrangement

collision is represented by 1 + (2 + 3) - (1 + 3) + 2, where (2 + 3) and (1 + 3)

stand for the bound hydrogenlike states of 2, 3, and 1, 3 respectively. 2 7 Let us

assume that the masses and charges of the particles are given by m, m 2 , m 3,

and Z, e, Z 2 e, - Z 3 e, where e is the absolute value of the electronic charge.

Similarly, let the initial and final relative momenta in the center of masses be

given by -h k and-h k 2. Then the conservation of energy implies that

(2

J_ --)----3- . ----

-.-.

where p i is the reduced mass of the system, E (i, j) is the energy of (i + j) state

with the principal quantum number n, R is the rydberg unit of energy, and m e

is the electronic mass.

The exact charge exchange cross section c (i, f) for transition between states

i, f is related to the exact wave function for the three particle system by



where ip (r 1 , r2, r 3 ) is the wave function of the system with r i the position vector

of the ith particle, Vii is the potential between the i and j particles, and P(i, rjk)

is the eigenfunction of the (j + k) in state i.

Different orders of the Born approximation is obtained from the above28

expression. The first Born approximation is obtained by replacing the total

wave function by either its initial or final asymptotic form. The two forms of
T (i, f) then become equivalent. 2 5 If we assume that initially the atom is in the

ground state and finally in the excited nm of the state, with nm the hydrogenic

quantum numbers, in the first Born approximation (4) reduces to25

where U (nt m, p) is the Fourier transform of 0 (n t m, r) defined by

7



and

(Af (8)

The explicit form of U (n m, p) for the atomic hydrogen can be found

elsewhere. 2 9 We modify this form to describe the arbitrary hydrogenlike atoms.

Then it follows that

(9)

2/I.

where Cv (z) represents the Gegenbauer function.

F (n {, p) can be expressed as a polynomial by considering the expansion3 0

By making a Taylor's expansion of the left hand side, (12) leads to

) ((-x _-h - (13)

By evaluating the right hand side we find that

8



By means of (10) and (14) F (n f, p) can be explicitly expressed in terms of its

arguments:

(,r I . ., . -. L

(15)

Through (9) and (15) and the identity2 5

"o - r(16)

.3 '3

the amplitude due to the attractive potential or the OBK amplitude, Eq. (5), in

the limit of large n will reduce to the following simple form:

. . ,) - - 2. " , /,) z

3/2 -. / --

(17)

where a0 and a refer to the initial and final bound states, respectively, and

9



By its definition 0 lies in the first quadrant. Eq. (18) then shows that ( ), c)

lies always between zero and one. In particular we have the following limiting

values:

4 (, , -- >>#~ (19)

Another point of interest is the expansion of T (n ' m, V23 ) in inverse

powers of n for n- co . Making use of the expansion

S(20)

we see that

( } z i' - O ('/V ) (21)

Through (17) we then find that for small {

/W) -4.r., O(/L /e(I (22)

For future reference we give the expansion of 5 (0, c) to two terms in n:

2-A

3  d 4 ( d 4)
It should be noted that an is independent of n.

10



Evaluation of T (V12 ) is algebraically more complicated. In this case we

introduce q = c - p. Then with the help of (9) and (15) Eq. (6) can be written

-

Y-- (24)

where Re stands for the real part of a quantity, and

00 -32.

J4 Af) ,-_7 +(25)

_ e-_ (26)

By separating the real part of the integrand on the right hand side of (24) we

obtain

- -( (2. - 9



00 J/ tl

Let us consider a parameter q0 such that a < < q < < 1. Then (28) can be written

0- fZ/t

00 ______ 

~ (29)7 oy

We notice from (27) that the minimum value of n - 2/L - v - 4/2 is equal or

greater than 1. Also as q - 0, or q - 0, the value of f (4 m, q) approaches a

finite value independent of q, or zero. Then the value of the second integral in

(29) is of the order of q., where w is a number greater or equal to 1. Similarly,

when q is of the order a, the integrand in the first integral in (29) is of the order

of a -2 [n2 - v - I /2 . Then the value of this integrand is of the order of a - ',

where again ov is greater or equal to one. The second integral in (29) can then

be neglected compared to the first one.

Since in the first integral in (29) q lies between 0 and qo, we are justified

to make a Taylor's expansion of f (4 m, q) in the integrand.

12



It follows that

.0 (N) (

S( , ., ,) = . J (3 1)

J-(77 i00 (32)

where No corresponds to the first non-vanishing term of the series.

We introduce now y = a 2 + q 2 , and obtain

2-I

_A=

(33)

The minimum value of the power of y in the denominator of the integrand in (33)

is 1/2 (3 + - N). Evaluating the integral in (33), and combining (27), (31), and (33)

leads to

o) M (13(34

13



j1 (35)

For N > t, and some values of X, v, and , logarithmic terms occur in (33). This

does not create particular difficulty. But since the leading term in the amplitude

arises from N . 4, the case N >t will not be treated here.

Making use of the properties of the bionomical coefficients, the sums with

respect to X in (35) can be closed. We find that

g = - - I- 2, - (36)

Combination of (24) and (34) now leads to

T4L 31 N

(37)



(38)

where now j replaces the summation with respect to p.

Equations (36) - (38) together with (17) and (18) provide an expansion in

terms ofa, or 1/n, for the first Born amplitude. In the following we restrict

ourself to the leading term of the expansion.

For evaluation of f (N) (4 m, 0), which are the coefficients of the Taylor's

expansion of f (m, q), with respect to q, we choose the z axis of the integration

along C. Then by a straight forward calculation we find that

< (o

2 2 ,) (39)

b (I, o) -1

R I " A1X3 ,, (41)



These equations show that for = 0, 1, and 2, N0 = . Putting N- N o

in (36) and using the properties of the binomial coefficients, the summation in

(36) with respect to v can be closed. We find that

77 24(42)

Substituting these values of C (nt I) in (38), the summation with respect to j in

(38) can similarly be closed. This results in the following expressions:

5(.,, -(- (43)

Substituting the values of f(N) (t{m, 0) and S (n 4 ) from (39) through (41),

and (43), we finally obtain the following results:

3 2. 7 Z,Z.o( o2 (44)



,',,j ", Y713 V3 " -

L '/ 3/a 2.

+ ) (46)

This completes the evaluation of the core amplitude for t = 0, 1, 2. As is

seen, these amplitudes are given analytically in terms of the incident energy

and the scattering angle 6 = cos- 1 - 1.k 2

We notice that the core amplitudes have the same n and energy dependence

as the OBK amplitude given by (17). Due to the factor of a3/2 in both amplitudes,

the cross section for both the OBK and Born behaves as 1/n 3 . The energy

dependence can be seen by noticing that at high incident energies C and A behave

as E"/ 2 , where E0 is the incident energy. Then studies of Eqs. (17) and (44)

through (46) show that for capture into the finalt state the cross section behaves
-6 -

as Eo

17



It remains to show that the higher order term in T (n t m, V12 ) behaves

as n - 7/ 2 . To show this from (26) and (30) we can write

.0 J Y , .4 A do (47)

where g N (q, q) is found through the expansion

A f r 1 2 _^ ,

d. X 4 (48)

By differentiating the middle term in (48) with respect to q we find that gN (q, 0)

is a polynomial in terms of X" x", where ~ + v = N. Since both X and x have odd

parities with respect to the reflection of q through the origin, the parity of

g N (q, 0) with respect to this reflection is N. From (47) it then follows that

f N (t m, 0) vanishes unless / + N is even. For a given t, N then takes only odd

or even integers. Through (34) we then see that if the leading term of T (n t m,

V12 ) behave as n-3/2 , the next higher order term behaves as n-7/ 2

Since the higher order term in T (nt m, V2 3 ) is also proportional to n-7 / 2

the higher order term in the cross section is proportional to 1/n s

As a check on the validity of the foregoing derivation, and to clarify an error

which has led to an erroneous conclusion in a previous publication 1 9 , Eq. (44) is

rederived in the Appendix by a different method.

To find the total cross section equation (3) must be used. By changing the

variable of integration from k 1 . k 2 to C , and using the explicit form of T (i, f),

10



the integral in (3) could easily be integrated in terms of elementary functions

were it not for the factor ( ({, c) in the OBK amplitude. Due to this factor the

total cross section should be obtained numerically. However, for the symmetric

collisions, Sec. II. 3, and also when (~, c) -1, (Sec. III. 1), analytic expression

for the cross section will be given.

2. Summation with Respect to the Angular Momentum

Using a formula due to Fock 3 1 we can sum the squared modulus of the

amplitude with respect to Am, and find a closed expression. It will be shown

that at high energies the s-states dominate, and the total cross section behaves

as 1/n 3 . From (6) by introducing q = C - p we obtain

S-2. I2.

U .. VA vf (49)

For evaluation of the sum with respect to tm we use the sum rule for the

31
four dimensional spherical harmonics

.0 W7(50)

where w is a function of q and q' given by

219



and 6,rx are the cartesian coordinates of a four-dimensional unit sphere

related to' q by

A. -Y X7L (52)

with 6 and (p the angular part of the polar coordinates of q.

By finding the form of U (100, p) from (9) and (10), Eq. (49) can now be

written 2.

X' /f(53)

S0( /2. 2. 2. 1 2

(54)

The function f (q, q') remains finite as a - 0. Following the argument given in

the previous section, we make a Taylor's expansion of f (q, q'), and keep the

zero order term, f (0, 0). On the right hand side of (53) the only term which

depends on the angular coordinates of q and q is sin n w/sin w. Realizing

20



that sin n w/sin w is a scalar quantity, for integration over the angles of q and

q' we can take the z-axis along q. Then, introducing cos y = q ^ ' ,

77
A A 77f ff -- f/4i (55)

The variable of integration can be changed from y to w through the relationship3

-I g
-- (56)

When the integration is carried out we find that

A A

1 - -- ----- (57)

Equation (53) can now be written

f(58)

21
21



integral in the limit a- 0 is equal to (-1)n-' -/2. It then follows that

2- ( XZ77 Z, eJ 0 (
_ (59)

Comparison of this with (32) indicates that for the zero order expansion of

f (q, q'), the total cross section is equal to the s capture cross section. The

higher order terms of expansion of f (q, q') with respect to q and q', as can be

seen from (54), lead to results which fall faster with respect to energy

compared to the zero order term, and therefore can be neglected.

B. Symmetric Collisions

We refer to the charge exchange collisions as symmetric when m 1 = m 2 .

The resonance collisions as defined by Bates and Dalgarno26 refer to the case

when m1 = m 2, Z1 = Z 2 , and the capture takes place into the ground state. The

resonance collision is then a special case of the symmetric collisions.

It was first recognized by Mapleton3 2 that in a resonance collision, in

particular in electron capture by protons from the atomic hydrogen, the cross

section at high energies behaves as 1/E 3 instead of the general behavior of

1/E 6 . However, the 1/E 3 behavior does not appear until the incident energy is

well above 100 MeV. Below this energy the 1/E 6 behavior dominates. The

similar case of the exchange collision between positron and positronium has

been treated by Chen and Kramer . The case of exchange collision between

electron and atomic hydrogen has been overlooked by both authors. Here we

like to show that the 1/E 3 behavior also appears for capture into the highly



excited states, and probably appears for capture into any excited state. The

excited states have not been previously treated in the literature.

We apply the results to the inelastic exchange collision of electrons with

atomic hydrogen, and show that the high energy behavior is given only through

the 1/E 3 behavior.

The 1/E 3 behavior arises from the backscattering and is due to the core

potential. We then consider cross section due to T (n '? m, V 2 ) only. Let us

introduce M = p 1 3/m 3 = p/23/m 3" From the definition of B and C we then find

that

4 M4.( ) A (60)

By means of this equation and using Eqs. (44) - (46) we can show that

2. 10 2. L 5 3

S2 O 2 (cf. Eq. (37)). Defining an integral I (i, j) by
23 2. d 0d

23



-H
-1- _ _ (62)

.s ( i s' 4) =

Then by an elementary integration we find that

2.

where the coefficients a and b are defined by the equation a2 + (B -C) 2 = a + b C2 ,

and are given by

c c= t I C)(1-1) ( f - b -=- 1 (i-A1) (64)

At high incident energies when k2 >> a2/ 13 we find that

4, 3 (65)

In applying (65) to (63) we realize that the leading term comes from the C2

limit and = 0. Then . -(

2 . 12 ( I) -_ ('+A]



The above equation implies that the leading terms in the cross section

arises from the terms with smallest value of i. In (61) we then have to consider

the terms with i = 0.

Using the form of T (n t m, V12 ) given by (44) through (46) we find that

0 A o A O otherwise.

Sotherwise, otherwise,

0 - 0 otherwise,

2./ /Io 0 J

A 0 . = 0 otherwise. (67)

Combining (67) with (61), and making use of (63), the total cross section as

given by (3) can be evaluated. Since the magnetic quantum number m refers to

C as the z axis which is not fixed in space, there is no use to list the cross

section for each m. We sum with respect to m and we find that

2( / -- -3
x (It A -M)(65R)3

--

25



cT&o~) - (z,/ZL J&7s) (68)

In these equations E/R is the center of mass energy in rydberg units related to

k through

51R (69)

with ao the Bohr's radius. It should be realized that the restriction on k2 given

by (65) for the validity of Eqs. (68) is not restrictive enough. For each value

of m 1 and m 3 the next to the leading term in (63) should be worked out, and the

validity criterion be given accordingly. This will be done for p + H and e + H

systems in the next section.

As was shown by Mapleton we see that the contribution to the 1/E 3 behavior

comes from the C2 limit, which corresponds to the backscattering.

An important difference between the symmetric and non-symmetric collisions

is that in the former case capture into any final state angular momentum t

behaves as 1/E 3 , while in the non-symmetric case this behavior is 1/E . In

the symmetric case all angular momenta contribute to the total cross section,

although as it can be seen from (68) the contribution becomes progressively

less as t increases. In the non-symmetric case contribution comes only from

the s states.

26



III. APPLICATIONS

A. Protons on Atomic Hydrogen

In Fig. 1 the differential cross section for capture into the highly s states is

plotted versus cos 0, where 0 is the scattering angle. It is seen that as is the

case for capture into the is state the cross section peaks in the forward direction

both in the Born and the OBK approximations. The cross section also peaks in

the backward direction for high incident energies in the Born approximation as

is seen for 2.5 MeV incident energy. The magnitude of the peak for the backward

capture is less by about 9 orders of magnitudes compared to the forward capture.

This can be seen by comparing figures 1 and 2. There is no backward peak for

the Boin at 25 keV, since collisions are not strong enough. Since there is no

nuclear nuclear interaction in the OBK approximation, there similarly is no

backward peak in this approximation.

In Figure 2 the differential cross section is plotted for very small scattering

angles. In the Born approximation the cross section becomes zero for angles

of the order of the electron to proton mass ratio, and is almost independent of

the charge and energy of the projectile. The origin of this zero is due to the

fact that the amplitude due to the attractive and repulsive potentials are real,

and for some scattering angle they become equal in magnitude, but opposite in

sign. For small angles, corresponding to large impact parameters, the at-

tractive potential amplitude dominates, while for larger angles, corresponding

to close collisions, the nuclear-nuclear amplitude dominates, and zero occurs

between the two extremes.

27



As the target nuclear charge increases it is expected that the zero appear

at smaller angles. In the limit of very high Z 2 the zero does not appear at all.

Due to the simplicity of the model, the foregoing charge dependence of the zero

angle may not provide a true picture of the actual proton-multielectron atom

charge exchange collisions. It is more applicable to the electron capture by

protons from the isoelectronic sequence of the atomic hydrogen.

The zero in the differential cross section has been the subject of extensive

investigation by many authors. But most of these investigations are restricted

to capture into the ground state. For such capture Kramer 8 has shown that in

the place of the zero in the first Born, only a minimum appears in the second

Born approximation. Measurement of the structure of the differential cross

section at small angles should provide a clue to the accuracy of different cal-

culational models.

In Figure 3 the differential cross section for is - n p and is - nd, when n2

> > 1, is plotted versus cos 0. For these cases the peaks in the backward capture

appears not at 1800, but very close to 1800.

In Figure 4, similar to Fig. 2, the differential cross section for is- n p

transitions,n 2 >> 1, is shown for small scattering angles. Unlike is - n s

transitions, there are no zeros in the differential cross sections, but minima

in the Born approximation. The OBK cross sections, similar to the previous

cases, are monotonically decreasing function of the scattering angle.

In Figure 5 the differential cross sections for small scattering angles are

shown for is - n d, n2 >> 1 transitions, and for the Born approximation. The

28



curve for 25 KeV peaks not at zero, but at an angle close to zero. The curve

for the 2.5 MeV is a monotonically decreasing function of the scattering angle.

In Figure 6 the total cross section for is - n ,, n 2 >> 1, = 0, 1, 2 transitions

in the OBK approximation, and also the total cross section summed over all the

angular momenta, are plotted versus the squared of the relative velocity in units

of the Bohr velocity. It is of interest to see that capture into the p states for

incident energies up to about 100 keV has larger cross section compared to

capture into the s states. Similar trend is shown for the first Born as will be

seen in Figure 7. It is difficult to understand the physical reason for this

behavior, and an experimental verification of this behavior is desirable.

The determination of o-(nt), n 2 >> 1, was first made by Butler, May, and

Johnsonl3. Although they use a different method to calculate their cross

section, it is found out that their results graphically are identical to the OBK

results shown in Fig. 6. Their cross section is for capture into all the excited

states varying from a lower limit N to infinity. Making use of the expression

o0

we see that when the ordinate of Fig. 6 is multiplied by 1/2, their cross section

will result. This implies that their calculation is equivalent to an impact

parameter calculation. The peaks in Fig. 6 are broad and do not occur at

v/v = 1. This makes the designation of these peaks as resonances

by Butler et al which should occur when v = vo difficult to understand.
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Figure 7 shows capture into nt, n 2 >> 1, t = 0, 1, and 2 in the Born ap-

proximation. Similar to the OBK case, for low impact energies the t = 1 dominates.

At high energies , = 0 contribution dominates and it approaches B (total). It

should be noted that oB (total) here is not the sum of all t contribution, but only

= 0, 1, and 2.

Figure 8 has a special significance, for it shows how the 1/n3 law is obeyed

for the p + H system. In this figure the ratio of n 3 (1s - nt) to no a(ls - not),

where n 2 >> 1, and no = + 1 is the lowest member of the is - nt transition, is

plotted for the OBK and the first Born approximations as a function of the energy

for a range of the incident energies from zero to 2.5 MeV. Each curve in this

figure provides an upper limit to an envelop of curves bounded from below by

the x axis, each curve within the envelop designating the ratio of the cross section

for a particular transition to the cross section for the lowest member of the

transition.

If the excited states cross sections at sufficiently high energies were scalable

from that of the ground state by the 1/n 3 law, the ordinates of all the curves

should approach unity in this energy limit. However, except for the s captures

according to the OBK, this limit is not reached, indicating the approximate

nature of the 1/n 3 law for the low lying states in other cases.

Making use of the results which will be derived shortly (cf. Eq. (73)), and

the results of Ref. (12) we can show that
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Similarly, making use of (74) and a result of Ref. 25 we can show that

g 5 -/

Sc7 1(5s nS) 0 (71)

In_0 a 'tj O.z .0 -, , _1-0 (70)

The ratios in the Born for the p and d captures cannot be found, since the high

energy limits of oB (is - 2p) and oB (is - 3d) is not available.

Another useful aspect of Fig. 8 is in throwing some light on the simplifying

assumption of Bates and Dalgarno (cf. Ref. 26) that the scalings in the Born and

the OBK approximations are the same. Figure 8 clearly shows that this assump-

tion is an approximation.

Recently Khayrallah et al,3 3 and Bayfield et a134 have measured electron

capture by protons from the atomic hydrogen, where the capture takes place

within the quantum numbers n = 13 to n = 30. Their results are shown in Figure

9. Their experimental uncertainty is ±30%. In the same figure results obtained

by the impact parameter approximation of Butler and Johnston3 5 , and May36
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are also shown. Shown are also the OBK results. The impact parameter and

the OBK results are almost identical, and can not be distinguished on the graph.

Finally, using asymptotic -form with respect to n, the cross section due to the first

Born is also shown. As was shown in the previous section, correction to the

asymptotic form is of the order of 1/n 2 . It will also be shown later 3 7 that by

n = 13, the Born cross section has converged to its asymptotic form within a

few percent. Then discrepancy of more than a factor of three between the first

Born and the experiment can not be due to the use of the asymptotic form. In

the light of the fact that in the range 40-60 keV incident energy the first Born

is in excellent agreement with measurement when capture takes place in all

values of n2 5 , the lack of agreement in Figure 8 is puzzling. This disagreement

suggests that the criterion for validity of the first Born for capture into the

highly excited states is different compared to that for capture into the ground

state, and better agreement may be obtained at higher energies. It should also

be noted that Jackson and Schiff scale the ground state according to the 1/n 3 law

to obtain the excited states capture cross sections, therefore underestimating

these cross sections (cf. Fig. 9). An accurate estimate of the excited state

cross section should modify the total cross section of these authors.

Improvement in the first Born approximation has been obtained by Band3 8

who orthogonalizes the initial and final wave functions of the system. In the

range 50-60 keV his calculated cross section agrees with the measurement

within the experimental errors.
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In the limit of high energies the total cross section can be found analytically.

The difficulty in carrying out the integration with respect to the scattering angle is

the factor ( (t, C) in the OBK amplitude given by (18). However, in the limit

indicated by (19) the integration can be carried out. For the p + H system the

major contribution to the cross section comes from small scattering angles.

Then following H. Schiff3 9 we expand C2 and (B - C )2 , which appear in the

integral expression for the cross section, in terms of this angle, and keep the

leading terms. For the sake of generality let us introduce e as the ratio of the

mass of the electron to that of the proton. Let the masses of the projectile and

target nucleus be given by b/E and c/E, where b and c are the two particle

masses in units of the proton's mass. Then using (8) we find that

L bf c
(72)

From the first equation we see that the minimum value of ao C is s/2. Then

through (19) we see (,, C) -1 for all the scattering angles if s >> 1. Combining

(3), (17), and (44) - (46), making use of (72), and changing the variable of integra-

tion to x = [2bc/(b + c)] 2 (M/m e )2 82 with a range of integration from 0 to co,

we find the following values for the cross section

510z 33- z z
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S(2.6 2

" -=. 5#~ 2 -I + Z - ,7

get the following ratios:

CL( ) U (r  (73)

In these expressions to and the firstand for cross sections in the Born and OBK

approximations.

For Z2 = 1, which corresponds to the p + ground system, (71) simplifies and we

get the following ratios:

v;7 a5 G -(- W -h ) J W 0 .

S0.661.

(74)

091

It is interesting to compare the first of these equations with similar expression

for capture into the ground state given by Jackson and Schiff which is 0O(ls)/OBK(lS)

~ 0.661.
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Finally, we like to investigate the E - 3 behavior for capture into the highly

excited states. This behavior for capture into the ground state has been investi-

gated by Mapleton3 2 . Applying Eqs. (68) to the p + H case, and noticing that

m1 = b/E, m2 = c/c ,and m, = me, we obtain

2 .7 3E/R .7 /O (75)
77 3 E(/R) 3

where the validity condition is obtained by considering next to the highest term

in (63), which arises from X = 4 and C2 limit. Similar expression for a (n p) and

r (n d) can be obtained using (68). It should be noted that the validity condition

in (75), consistent with the condition given by Mapleton, indicates the 1/E 3 be-

havior appear for energies well above 100 MeV. The result given by Mapleton is:

- T_ E// (76)

- E/R 3 ,

By putting c = Z = Z2 = 1 in (75) we see that the coefficient of (E/R)- 3 in (75)

is 15.9 times larger than similar coefficient in (76). This can be taken as an

indication that the ground state can not be scaled to the highly excited states.

Assuming that protons are distinguishable, we can also compare cross

sections for direct and exchange excitation for the p + H system with a highly

excited final state. For the direct excitation we have 4 0 ,4 1
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<2. 
(77)

3

where A (is - nt) and B (is - nt) are atomic constants independent of the

nuclear charge and I1 is the reduced mass of the system. Using the values of

these constants 4 2 , for Z = Z2 = 1, and an incident energy of 100 MeV, we find

that

-'1

C ( p/ jp o. 67 Xo

However, as Z, and Z 2 increase, the exchange effect becomes more important

in a complicated way. Using our simple model, from (68) and (76), the first

ratio for example increases as (Z1 Z2 ).

43

For relativistic incident and bound electron energies, Mittleman has

shown that the cross section behaves as 1/E.

For the exchange scattering of electrons from the atomic. hydrogen, as will

be discussed in the next section, the 1/E3 behavior appears at much lower

energies, and there is no 1/E 6 asymptotic behavior.

B. Exchange Scattering of Electrons from the Atomic Hydrogen

Since in this case m i = m 2, also the scattering is a symmetric collision.

This case has not been treated by Mapleton. A proper treatment for this problem

when the electron spins are not polarized, similar to the p + H problem, would

be to use an antisymetrized wave function in which case the direct and exchange
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cross sections can not be separated from each other. However, to get an idea

about the relative size of the exchange to the direct amplitudes we use (17) and

(68) to get"

3 r .',7 S) 1 z O.
", a (Ao8 >> /(78)

-- n, ' /(E/A) ; 77 na 3 ZZ( /7) 3

where E/R is the incident energy in rydberg. Then 1/E 3 behavior becomes

valid at much lower energy compared to the p + H case. Expressions similar

to (78) can be found for p and d captures.

Comparison of (78) and (77) shows that the ratio of exchange to direct cross

section for e + H system increases as Z, the nuclear charge of the H isoelectronic

sequence. For 20 rydberg electrons on atomic hydrogen this ratio is 0.115.

C. Exchange Scattering of Positrons from Positronium

This problem has been treated by Chen and Kramer, considering capture

into the ground state and applying the first-order Faddeev-Watson multiple

scattering approximation . Due to the e - e interaction, they find that at

high energy the cross section behaves as 1/E 3 . We like to show that similar

behavior is obtained using the first Born, and considering capture into the

highly excited states. By putting m1 = m 2 = m 3 = me, and making use of

Eqs. (68) we find that

"3 C 7(5) 2 51R >> IS_'3 ' (79)
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where E/R is the center of mass energy, equal to the 2/3 of the incident energy.

Similar expressions can be obtained for capture into the n p and n d states. If

the first Born cross section as given in Ref. 7 for capture into the ground state

is found from a graph in this reference, the coefficient of (E/R) - 3 on the right

hand side of (79) for n = 1 is found to be 1.66, while this coefficient in (79) is

25.3. The ratio of the two coefficients is 15.2, almost the same as this ratio

for the p + H system.

D. Positronium Formation in e+ + H Collisions

The difficulties arising in the first Born approximation in the case of the

heavy particle projectiles does not arise in this case, and the validity of this

approximation is less known. For capture into the ground state it is found that4 4 ,4 5

the cross section given by the first Born is an order of magnitude smaller than

that of OBK. There are some indications from the measurement4 6 that the

first Born cross section is also too large at the threshold of Ps formation.

By putting m1 = m 3 = electron mass, m 2 = proton mass, and Z, = 1 in the

general formula (17) and (44) - (46), and using (3), appropriate cross section

for capture into the high n can be obtained. The cross sections obtained should

provide useful order of magnitude estimates for captures into the s, p, and d

states.

Unlike the p + H case, not much details will be given here. It is of interest,

however, that similar to the p + H case, the differential cross section for s

captures according to the first Born goes to zero for some scattering angle.
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To show this we equate the right hand sides of (17) and (39) in the limit

( (0, C) - 1. This limit is satisfied if ao Cmin > > 1. From (8) we see that

C2 = k + 1/4 k - k k, k2 cosS . Therefore ao Cmin >> 1 corresponds to ao ki

> > 1. Under this condition and Z = 1, the angle at which the zero occurs is

given by C 2 = 2 B - C. Using (8) we then find that

foO 2

The angle is much larger than the similar angle for the p + H case. The experi-

mental verification of this zero in the differential cross section is of great interest.

As the nuclear charge of the target increases, this angle should decrease.
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APPENDIX

The error in Ref. 19 is in choosing a variable z-axis for the evaluation of

the integral in (5) of this reference while the integrand is not scalar except for

the s states. Here we show that for the s states one can use the results of Ref.

19 to obtain Eq. (44) of the text. Keeping in mind the transformation between

the spherical and parabolic hydrogenic wave functions 4 7 , we can write

x T n , , V ) (Al)

where the bracket on the right hand side is the 3-j symbol, and T (n n, 0, V12 )

is given by Eq. (15) of Ref. 19.

A phase correction should be applied to Eq. (8) of this reference by re-

placing 2 nI in this equation by nj - n 2 . Since n, - n 2 is even for n odd and is

odd for n even, the derivation that follows Eq. (8) is valid for n odd. For n even

the derivation should be slightly modified, but the final result is the same as

the one which will be given here.

Then for n odd Eqs. (7) and (15) of Ref. (19) imply that

S 40
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The interchange of the first two columns of the 3j symbol is equivalent to the

interchange of n1 and n,. This interchange leaves the 3j symbol invariant.

Then the right hand side of (Al) vanishes unless n 2 = n 1 . It follows that4 8

x - 1. =.,, o I

-) 3- 27 77 Z , . oZ

where for T (n n1 = n2 0 , V12 ) Eq. (9) of Ref. 19 has been used. Except for a

phase factor, (A3) is the same as (44) in the text.

The error in Ref. 19 was discovered through a correspondence, with R. A.

Mapleton. Y. B. Band had independently recognized the source of the error

(cf. Ref. 38).

41



FIGURE CAPTIONS

Fig. 1. Differential cross section for p + H (is) - H (n s) + p, n2 > > 1. 0 is

the scattering angle, B and OBK stand for the first Born, and the

Oppenheimer, Brinkman, and Kramers approximations. 25 keV and

2.5 MeV are the energies of the primary protons.

Fig. 2. Zeros in the differential cross section for small scattering angles

and s captures. Notations are the same as in Fig. 1. me/M is the

ratio of the electron to proton masses.

Fig. 3. Differential cross section for n p and n d captures, n2 >> 1, for the

first Born approximation. Notations are the same as in Figure 1.

Fig. 4. Minima in the differential cross section for small scattering angles

and n p captures. Notations are the same as in Figure 2.

Fig. 5. Differential cross section for small scattering angles and n d captures.

Notations are the same as in Figure 2.

Fig. 6. Total cross section for n s, n p, n d, and nZ t captures in the OBK

approximation as function of the squared of the relative velocity v.

v0 is the Bohr velocity, and (v/vo)2 = 1 corresponds to about 25 keV

incident proton energy.

Fig. 7. Total cross section for n s, n p, n d, and their sum in the Born

approximation as a function of the squared of the relative velocity.



Fig. 8. Sum of the capture cross sections for p + H (is) - H (n.2 ? ) + p, n =

13-30 according to the measurement (Refs. 33 and 34), impact parameter,

Refs. 35 and 36, OBK, and the first Born approximations. The sum

designated by a. is in units of A . In the figure the normalized data

of Ref. 34, which is slightly lower than Ref. 33, has been used.

Fig. 9. Ratio of the o(1s - n)/ (1s -n no t), n2 >> 1, where no = +1. The

lower three curves are due to the OBK, and the upper three curves

are due to the first Born approximations.
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